# An Algebraic Approach to Internet Routing Part I 

Timothy G. Griffin

```
timothy.griffin@cl.cam.ac.uk
            Computer Laboratory
University of Cambridge, UK
```

Departamento de Ingeniería Telemática
Escuela Politécnica Superior
Universidad Carlos III de Madrid 16, 17, 18 March, 2009

## Shortest paths example

A weighted graph :


$$
\mathbf{A}=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 3 \\
& 5
\end{aligned}\left(\begin{array}{ccccc}
1 & 2^{2} & 3 & 4 & 5 \\
3 & 3^{2} & 4 & \infty & \infty \\
3 & \infty & 1 & \infty & \infty \\
4 & 1 & \infty & 2 & 2 \\
\infty & \infty & 2 & \infty & \infty \\
\infty & \infty & 2 & \infty & \infty
\end{array}\right)
$$

- The algebraic structure is $\mathrm{sp}=(\mathbb{N} \cup\{\infty\}$, min, +$)$.
- Path weights are computed from arc weights using + .
- Best path weights are selected using min.


## Solution to the example

The example graph:


$$
\mathbf{X}=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left(\begin{array}{lllll} 
& 1 & 2 & 3 & 4 \\
0 & 3 & 4 & 6 & 6 \\
3 & 0 & 1 & 3 & 3 \\
4 & 1 & 0 & 2 & 2 \\
6 & 3 & 2 & 0 & 4 \\
6 & 3 & 2 & 4 & 0
\end{array}\right)
$$

## How do we find solutions?

- We will mostly look at matrix methods.
- Other familiar methods (Dijktra's algorithm, Bellman-Ford) can be used in special cases to compute a selected row of the solution.


## Equational specification of problem being solved

(1) Extend $(\mathrm{min},+)$ to $(\boxplus, \boxtimes)$ on $5 \times 5$ matrices in the natural way :

$$
\begin{aligned}
& (\mathbf{A} \boxplus \mathbf{B})(i, j)=\mathbf{A}(i, j) \min \mathbf{B}(i, j) \\
& (\mathbf{A} \boxtimes \mathbf{B})(i, j)=\min _{1 \leq q \leq 5} \mathbf{A}(i, q)+\mathbf{B}(q, j)
\end{aligned}
$$

(c) Solve this matrix equation for $\mathbf{X}$ :

$$
\mathbf{X}=(\mathbf{A} \boxtimes \mathbf{X}) \boxplus \mathbf{I}
$$

where $\mathbf{I}$ is the identity matrix:

$$
\mathbf{I}=\begin{aligned}
& 1 \\
& 2 \\
& 2 \\
& 4 \\
& 4
\end{aligned}\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & \infty & \infty & \infty & \infty \\
\infty & 0 & \infty & \infty & \infty \\
\infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 0 & \infty \\
\infty & \infty & \infty & \infty & 0
\end{array}\right)
$$

## Does it make sense?

Suppose $\mathbf{X}$ satisfies

$$
\mathbf{X}=(\mathbf{A} \boxtimes \mathbf{X}) \boxplus \mathbf{I}
$$

then

$$
\mathbf{X}(i, i)=0
$$

and for $i \neq j$,

$$
\mathbf{X}(i, j)=\min _{1 \leq q \leq 5} \mathbf{A}(i, q)+\mathbf{X}(q, j)
$$

## Example: Widest paths (max, min)

- The algebraic structure is $b w=(\mathbb{N} \cup\{\infty\}$, max, min $)$.
- Path weights are computed from arc weights using min.
- Best path weights are selected using max.

A weighted graph :


The solution: FIX

$$
\mathbf{X}=\begin{aligned}
& 1 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left(\begin{array}{lllll} 
& 2 & 3 & 4 & 5 \\
\\
3 & \infty & 3 & 2 & 2 \\
4 & 3 & \infty & 2 & 2 \\
2 & 2 & 2 & \infty & 2 \\
2 & 2 & 2 & 2 & \infty
\end{array}\right)
$$

But (max, +) does not work. Why?

## (Classical) Algebraic Routing

- Generalize to semi-rings

$$
(\mathbb{N} \cup\{\infty\}, \min ,+) \longrightarrow(S, \oplus, \otimes)
$$

- Use $S$ to assign weights to arcs in a graph with $n$ nodes.
- Extend $S$ to $n \times n$ matrices over $S$.
- Study properties of $S$ (or of the weighted graph) that imply that we can find solutions to

$$
\mathbf{X}=(\mathbf{A} \boxtimes \mathbf{X}) \boxplus \mathbf{B}
$$

- For example, distribution plays a key role in the classical theory.

$$
\begin{array}{lll}
\text { (L.DIST) } & a \otimes(b \oplus c) & =(a \otimes b) \oplus(a \otimes c) \\
(\text { R.DIST }) & (a \oplus b) \otimes c & =(a \otimes c) \oplus(b \otimes c)
\end{array}
$$

## Semiring Examples

## See [Car79, GM84, GM08]

| name | $S$ | $\oplus$, | $\otimes$ | identity <br> for $\oplus$ | identity <br> for $\otimes$ | possible use <br> in routing |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| sp | $\mathbb{N} \cup\{\infty\}$ | $\min$ | + | $\infty$ | 0 | minimum-weight rou |
| bw | $\mathbb{N} \cup\{\infty\}$ | $\max$ | $\min$ | 0 | $\infty$ | greatest-capacity rou |
| rel | $[0,1]$ | $\max$ | $\times$ | 0 | 1 | most-reliable routing |
| use | $\{0,1\}$ | $\max$ | $\min$ | 0 | 1 | usable-path routing |
|  | $\mathcal{P}(W)$ | $\cup$ | $\cap$ | $\}$ | $W$ | shared link attributes |
|  | $\mathcal{P}(W)$ | $\cap$ | $\cup$ | $W$ | $\}$ | shared path attribute |

## La Santa Biblia

## SEARCH INSIDE! ${ }^{\text {T" }}$



IWw Natk ast alytitm:

## Building new semi-rings from old ...

| name | $S$ | $\oplus$, | $\otimes$ | $\oplus$ id | $\otimes$ id | des |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sp | $\mathbb{N} \cup\{\infty\}$ | $\min$ | + | $\infty$ | 0 | mini |
| bw | $\mathbb{N} \cup\{\infty\}$ | $\max$ | $\min$ | 0 | $\infty$ | grea |
| sp $\overrightarrow{\times}$ bw | $(\mathbb{N} \cup\{\infty\}) \times(\mathbb{N} \cup\{\infty\})$ | $\oplus$ | $\otimes$ | $(\infty, 0)$ | $(0, \infty)$ | wide |

- Where $\oplus$ is a lexicographic addition,

$$
\left(d_{1}, b_{1}\right) \oplus\left(d_{2}, b_{2}\right)=\left\{\begin{array}{cl}
\left(d_{1}, b_{1}\right) & \left(\text { if } d_{1}=\min \left(d_{1}, d_{2}\right)\right) \\
\left(d_{2}, b_{2}\right) & \left(\text { if } d_{2}=\min \left(d_{1}, d_{2}\right)\right) \\
\left(d_{1}, b_{1} \max b_{2}\right) & \text { (if } \left.d_{1}=d_{2}\right)
\end{array}\right.
$$

- and $\otimes$ is a direct product

$$
\left(d_{1}, b_{1}\right) \otimes\left(d_{2}, b_{2}\right)=\left(d_{1}+d_{2}, b_{1} \min b_{2}\right)
$$

This makes a nice semi-ring!

## ... but you must be careful!

What if we want shortest, widest-paths (see [Sob02])? Then combine this (lexicographically) in the other order:

- Let

$$
\left(b_{1}, d_{1}\right) \oplus\left(b_{2}, d_{2}\right)=\left\{\begin{aligned}
\left(b_{1}, d_{1}\right) & \text { (if } \left.b_{1}=\max \left(b_{1}, b_{2}\right)\right) \\
\left(b_{2}, d_{2}\right) & \text { (if } \left.b_{2}=\max \left(b_{1}, b_{2}\right)\right) \\
\left(b_{1}, d_{1} \min d_{2}\right) & \text { (if } \left.b_{1}=b_{2}\right)
\end{aligned}\right.
$$

- let $\left(b_{1}, d_{1}\right) \otimes\left(b_{2}, d_{2}\right)=\left(b_{1} \min b_{2}, d_{1}+d_{2}\right)$

We will see that this does not produce a semi-ring (distribution rules do not hold)!!

- Why? (A big question, which will be answered!)
- Might it still be useful for routing? (We will see that the answer is MAYBE!)


## Defining and implementing a new routing protocol is difficult!

- The space is large
- The proofs are difficult
- Correctness conditions hard to get right

Could the design process be partially automated?

## (Prototype) Metarouting System

Routing language processing
Compilation


- Specification : Algorithms are currently picked from a menu, while the routing language is specified in terms of the Routing Algebra Meta-Language (RAML).
- Errors: Each algorithm is associated with properties it requires of a routing language (Example : Dijkstra requires a total order on metrics). Properties are automatically derived from RAML expressions. An error is reported when there is a mis-match.


## Outline

- Part I (today)
- Review of classical theory
- Part II (tomorrow)
- Present a constructive approach
- Part III (Wednesday)
- Live dangerously - drop distribution!
- Model BGP-like protocols
- Metarouting


## Goals these lectures

## Goals

- Understand the equation
routing protocol $=$ routing algebra + routing algorithm
- Understand how to construct new and interesting routing algebras
- Ignore implementation details
- Ignore the pressures of hot-topicism
- Go beyond Gondran and Minoux


## Caveats

- This is work in progress.
- We will not explore the important topic of efficient implementation of distributive algorithms.
- We will not explore the relationship between routing and forwarding, or routing and signaling (say PNNI).


## Let's start with a bit of notation!

| Symbol | Interpretation |
| :--- | :--- |
| $\mathbb{N}$ | Natural numbers (starting with zero) |
| $\mathbb{N}^{\infty}$ | Natural numbers, plus infinity |
| $\mathbb{Z}$ | Integers |
| $\mathbb{R}$ | Real numbers |
| $\mathbb{R} \geq 0$ | Positive real numbers (including zero) |
| $\mathbb{R}_{\geq 0}^{\infty}$ | Positive real numbers, plus infinity |

## Semigroups

## Definition (Semigroup)

A semigroup $(S, \oplus)$ is a non-empty set $S$ with a binary operation such that

$$
\text { ASSOCIATIVE }: a \oplus(b \oplus c)=(a \oplus b) \oplus c
$$

| $S$ | $\oplus$ | where |
| :---: | :---: | :---: |
| $\mathbb{N} \cup\{\infty\}$ | $\min$ |  |
| $\mathbb{N} \cup\{\infty\}$ | $\max$ |  |
| $\mathbb{N} \cup\{\infty\}$ | + |  |
| $\mathcal{P}(W)$ | $\cup$ |  |
| $\mathcal{P}(W)$ | $\cap$ |  |
| $S^{*}$ | $\circ$ | $(a b c \circ d e=a b c d e)$ |
| $S$ | left | (a left $b=a)$ |
| $S$ | right | (a right $b=b)$ |

## Special Elements

## Definition

- $\alpha \in S$ is an identity if for all $a \in S$

$$
\boldsymbol{a}=\alpha \oplus \boldsymbol{a}=\boldsymbol{a} \oplus \alpha
$$

- A semigroup is a monoid if it has an identity.
- $\omega$ is an annihilator if for all

| $S$ | $\oplus$ | $\alpha$ | $\omega$ |
| :---: | :---: | :---: | :---: |
| $\mathbb{N} \cup\{\infty\}$ | $\min$ | $\infty$ | 0 |
| $\mathbb{N} \cup\{\infty\}$ | $\max$ | 0 | $\infty$ |
| $\mathbb{N} \cup\{\infty\}$ | + | 0 | $\infty$ |
| $\mathcal{P}(W)$ | $\cup$ | $\}$ | $W$ |
| $\mathcal{P}(W)$ | $\cap$ | $W$ | $\}$ |
| $S^{*}$ | $\circ$ | $\epsilon$ |  |
| $S$ | left |  |  |
| $S$ | right |  |  | $a \in S$

$$
\omega=\omega \oplus a=a \oplus \omega
$$

## Important Properties

## Definition (Some Important Semigroup Properties)

$$
\begin{aligned}
\text { COMMUTATIVE } & : a \oplus b=b \oplus a \\
\text { SELECTIVE } & : a \oplus b \in\{a, b\} \\
\text { IDEMPOTENT } & : a \oplus a=a
\end{aligned}
$$

| $S$ | $\oplus$ | COMMUTATIVE | SELECTIVE | IDEMPOTENT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbb{N} \cup\{\infty\}$ | $\min$ | $\star$ | $\star$ | $\star$ |
| $\mathbb{N} \cup\{\infty\}$ | $\max$ | $\star$ | $\star$ | $\star$ |
| $\mathbb{N} \cup\{\infty\}$ | + | $\star$ |  |  |
| $\mathcal{P}(W)$ | $\cup$ | $\star$ |  | $\star$ |
| $\mathcal{P}(W)$ | $\cap$ | $\star$ |  | $\star$ |
| $S^{*}$ | $\circ$ |  | $\star$ | $\star$ |
| $S$ | left |  | $\star$ | $\star$ |
| $S$ | right |  |  |  |

## Order Relations

We are interested in order relations $\lesssim \subseteq S \times S$
Definition (Important Order Properties)

$$
\begin{aligned}
\text { REFLEXIVE } & : a \lesssim a \\
\text { TRANSITIVE } & : a \lesssim b \wedge b \lesssim c \rightarrow a \lesssim c \\
\text { ANTISYMMETRIC } & : a \lesssim b \wedge b \lesssim a \rightarrow a=b \\
\text { TOTAL } & : a \lesssim b \vee b \lesssim a
\end{aligned}
$$

|  | pre-order | partial order | preference order | total order |
| :---: | :---: | :---: | :---: | :---: |
| REFLEXIVE | $\star$ | $\star$ | $\star$ | $\star$ |
| TRANSITIVE | * | $\star$ | $\star$ | $\star$ |
| ANTISYMMETRIC |  | $\star$ |  | $\star$ |
| TOTAL |  |  | $\star$ | * |

## Canonical Pre-order of a Commutative Semigroup

Suppose $\oplus$ is commutative.
Definition (Canonical pre-orders)

$$
\begin{aligned}
& a \unlhd_{\oplus}^{R} b \equiv \exists c \in S: b=a \oplus c \\
& a \unlhd \oplus b \equiv \exists c \in S: a=b \oplus c
\end{aligned}
$$

## Lemma (Sanity check)

Associativity of $\oplus$ implies that these relations are transitive.

## Proof.

Note that $a \unlhd_{\oplus}^{R} b$ means $\exists c_{1} \in S: b=a \oplus c_{1}$, and $b \unlhd_{\oplus}^{R} c$ means $\exists c_{2} \in S: c=b \oplus c_{2}$. Letting $c_{3}=$ we have $c=b \oplus c_{2}=\left(a \oplus c_{1}\right) \oplus c_{2}=a \oplus\left(c_{1} \oplus c_{2}\right)=a \oplus c_{3}$. That is, $\exists c_{3} /$ inS : $c=a \oplus c_{3}$, so $a \unlhd R$. The proof for $\unlhd_{\oplus}^{\mathcal{L}}$ is similar.

## Canonically Ordered Semigroup

## Definition (Canonically Ordered Semigroup)

A commutative semigroup ( $S, \oplus$ ) is canonically ordered when $a \unlhd{ }_{\oplus}^{R} c$ and $a \unlhd\llcorner c$ are partial orders.

## Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \oplus a^{-1}=a^{-1} \oplus a=\alpha$.

## Canonically Ordered Semigroups vs. Groups

## Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

## Proof.

If $a, b \in S$, then $a=\alpha_{\oplus} \oplus a=\left(b \oplus b^{-1}\right) \oplus a=b \oplus\left(b^{-1} \oplus a\right)=b \oplus c$, for $c=b^{-1} \oplus a$, so $a \unlhd_{\oplus}^{L} b$. In a similar way, $b \unlhd_{\oplus}^{R} a$. Therefore $a=b$.

## Natural Orders

Definition (Natural orders)
Let $(S, \oplus)$ be a simigroup.

$$
\begin{aligned}
& a \lesssim \stackrel{L}{\lesssim} b \equiv a=a \oplus b \\
& a \lesssim R b \equiv b=a \oplus b
\end{aligned}
$$

Lemma
If $\oplus$ is commutative and idempotent, then $a \unlhd_{\oplus}^{D} b \Longleftrightarrow a<{ }_{\oplus}^{D} b$, for $D \in\{R, L\}$.

## Proof.

$$
\begin{aligned}
a \unlhd R b & \Longleftrightarrow b=a \oplus c=(a \oplus a) \oplus c=a \oplus(a \oplus c) \\
& =a \oplus b \Longleftrightarrow a \leq R b \\
a \unlhd \oplus b & \Longleftrightarrow a=b \oplus c=(b \oplus b) \oplus c=b \oplus(b \oplus c) \\
& =b \oplus a=a \oplus b \Longleftrightarrow a<L
\end{aligned}
$$

## Special elements and natural orders

## Lemma (Natural Bounds)

- If $\alpha$ exists, then for all $a, a \preceq{ }_{\oplus}^{L} \alpha$ and $\alpha \preceq_{\oplus}^{R}$
- If $\omega$ exists, then for all $a, \omega \preceq_{\oplus}^{L}$ a and $a \preceq_{\oplus}^{R} \omega$
- If $\alpha$ and $\omega$ exist, then $S$ is bounded.

$$
\begin{array}{lllll}
\omega & \preceq \stackrel{L}{\oplus} & a & \preceq \stackrel{L}{\bullet} & \alpha \\
\alpha & \preceq \stackrel{R}{\oplus} & a & \preceq \oplus & \omega
\end{array}
$$

## Examples of special elements

| $S$ | $\oplus$ | $\alpha$ | $\omega$ | $\preceq_{\oplus}^{L}$ | $\preceq_{\oplus}^{L}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbb{N} \cup\{\infty\}$ | $\min$ | $\infty$ | 0 | $\leq$ | $\geq$ |
| $\mathbb{N} \cup\{\infty\}$ | $\max$ | 0 | $\infty$ | $\geq$ | $\leq$ |
| $\mathcal{P}(W)$ | $\cup$ | $\}$ | $W$ | $\supseteq$ | $\subseteq$ |
| $\mathcal{P}(W)$ | $\cap$ | $W$ | $\}$ | $\subseteq$ | $\supseteq$ |

## Property Management

## Lemma

Let $D \in\{R, L\}$.

- idempotent $((S, \oplus)) \Longleftrightarrow \operatorname{Reflexive}\left(\left(S, \preceq_{\oplus}^{D}\right)\right)$
(2) commutative $((S, \oplus)) \Longrightarrow \operatorname{ANtisYmmetric}\left(\left(S, \preceq_{\oplus}^{D}\right)\right)$
- $\operatorname{selective}((S, \oplus)) \Longleftrightarrow \operatorname{Total}\left(\left(S, \preceq_{\oplus}^{D}\right)\right)$


## Proof.

(1) $a \preceq_{\oplus}^{D} a \Longleftrightarrow a=a \oplus a$,
(2) $a \preceq_{\oplus}^{L} b \wedge a \preceq_{\oplus}^{L} b \Longleftrightarrow a=a \oplus b \wedge b=b \oplus a \Longrightarrow a=b$
(3) $a=a \oplus b \vee b=a \oplus b \Longleftrightarrow a \preceq L_{\oplus}^{L} b \vee b \preceq_{\oplus}^{R} a$

## Bi-semigroups and Pre-semirings

## Definition

The structure $(S, \oplus, \otimes)$ is a bi-semigroup when

$$
\begin{array}{r}
\text { ADD.ASSOC : }(a \oplus b) \oplus c=a \oplus(b \oplus c) \\
\text { MULT.ASSOC }:(a \otimes b) \otimes c=a \otimes(b \otimes c),
\end{array}
$$

that is, when both the additive component $(S, \oplus)$ and the multiplicitive component $(S, \otimes)$ are semigroups.

## Definition

A bi-semigroup $(S, \oplus, \otimes)$ is a pre-semiring when

$$
\begin{aligned}
\text { ADD.COMMUTATIVE : } \quad \begin{aligned}
a \oplus b & =b \oplus a \\
\text { LEFT.DISTRIBUTIVE }: a \otimes(b \oplus c) & =(a \otimes b) \oplus(a \otimes c) \\
\text { RIGHT.DISTIBUTIVE }:(a \oplus b) \otimes c & =(a \otimes c) \oplus(b \otimes c)
\end{aligned}
\end{aligned}
$$

## Semirings

## Definition

A pre-semiring $(S, \oplus, \otimes)$ is a semiring when there exists $\alpha_{\oplus} \in S$ and $\alpha_{\otimes} \in S$ such that

$$
\begin{aligned}
\text { (ADD.L.ALPHA) } & \alpha_{\oplus} \oplus a=a \\
\text { (ADD.R.ALPHA) } & a \oplus \alpha_{\oplus}=a \\
\text { (MULT.L.ALPHA) } & \alpha_{\otimes} \otimes a=a \\
\text { (MULT.R.ALPHA) } & a \otimes \alpha_{\otimes}=a \\
\text { (MULT.L.OMEGA) } & \alpha_{\oplus} \otimes a=\alpha_{\oplus} \\
\text { (MULT.R.OMEGA) } & a \otimes \alpha_{\oplus}=\alpha_{\oplus}
\end{aligned}
$$

That is, when both $\left(S, \oplus, \alpha_{\oplus}\right)$ and $\left(S, \otimes, \alpha_{\otimes}\right)$ are monoids, and $\omega_{\otimes}=\alpha_{\oplus}$.

## Semiring Examples

## See [Car79, GM84, GM08]

| name | $S$ | $\oplus$, | $\otimes$ | identity <br> for $\oplus$ | identity <br> for $\otimes$ | possible use <br> in routing |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| sp | $\mathbb{N} \cup\{\infty\}$ | $\min$ | + | $\infty$ | 0 | minimum-weight rou |
| bw | $\mathbb{N} \cup\{\infty\}$ | $\max$ | $\min$ | 0 | $\infty$ | greatest-capacity rou |
| rel | $[0,1]$ | $\max$ | $\times$ | 0 | 1 | most-reliable routing |
| use | $\{0,1\}$ | $\max$ | $\min$ | 0 | 1 | usable-path routing |
|  | $\mathcal{P}(W)$ | $\cup$ | $\cap$ | $\}$ | $W$ | shared link attributes |
|  | $\mathcal{P}(W)$ | $\cap$ | $\cup$ | $W$ | $\}$ | shared path attribute |

## Solving (some) equations over a semiring

We will be interested in solving for $x$ equations of the form

$$
x=(a \otimes x) \oplus b
$$

Let

$$
\begin{aligned}
a^{0} & =\alpha_{\oplus} \\
a^{k+1} & =\boldsymbol{a} \oplus a^{k}
\end{aligned}
$$

and

$$
\begin{aligned}
a^{(k)} & =a^{0} \oplus a^{1} \oplus a^{2} \oplus \cdots \oplus a^{k} \\
a^{(*)} & =a^{0} \oplus a^{1} \oplus a^{2} \oplus \cdots \oplus a^{k} \oplus \cdots
\end{aligned}
$$

## Definition ( $q$ stability)

If there exists a $q$ such that $a^{(q)}=a^{(q+1)}$, then $a$ is $q$-stable. Therefore, $a^{(*)}=a^{(q)}$.

If $\alpha_{\otimes}=\omega_{\oplus}$, then every $\boldsymbol{a}$ is 0 -stable!

## Key result

## Lemma ([GM84, Car79])

If $a$ is $q$-stable, then $x=a^{(*)} \otimes b$ solves the semiring equation

$$
x=(a \otimes x) \oplus b
$$

Proof: Substitute $a^{(*)} \otimes b$ for $x$ to obtain

$$
\begin{aligned}
& \left(a \otimes\left(a^{(*)} \otimes b\right)\right) \oplus b \\
= & \left(\left(a \otimes a^{(*)}\right) \otimes b\right) \oplus b \\
= & \left(\left(a \otimes a^{(*)}\right) \oplus \alpha_{\otimes}\right) \otimes b \\
= & \left(\left(a \otimes\left(a^{0} \oplus a^{1} \oplus a^{2} \oplus \cdots \oplus a^{q}\right)\right) \oplus \alpha_{\otimes}\right) \otimes b \\
= & \left.\left(a^{1} \oplus a^{2} \oplus \cdots \oplus a^{q+1}\right) \oplus \alpha_{\otimes}\right) \otimes b \\
= & a^{(q+1)} \otimes b \\
= & a^{(*)} \otimes b
\end{aligned}
$$

## Semiring of Matrices

Given a semiring $S=(S, \oplus \otimes)$, define the semiring of $n \times n$-matrices over S,

$$
\mathbb{M}_{n}(S)=\left(\mathbb{M}_{n}(S), \boxplus, \boxtimes\right),
$$

where for $\mathbf{A}, \mathbf{B} \in \mathbb{M}_{n}(S)$ we have

$$
(\mathbf{A} \boxplus \mathbf{B})(i, j)=\mathbf{A}(i, j) \oplus \mathbf{B}(i, j)
$$

and

$$
(\mathbf{A} \boxtimes \mathbf{B})(i, j)=\sum_{1 \leq q \leq n}^{\oplus} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j) .
$$

- $\alpha_{\boxplus}(i, j)=\omega \boxtimes(i, j)=\alpha_{\oplus}$.
- $\alpha_{\boxtimes}(i, i)=\alpha_{\otimes}, \alpha_{\boxtimes}(i, j)=\alpha_{\oplus}$. The matrix $\alpha_{\boxtimes}$ is often denoted as I.


## Check (left) distribution

## $\mathbf{A} \boxtimes(\mathbf{B} \boxplus \mathbf{C})=(\mathbf{A} \boxtimes \mathbf{B}) \boxplus(\mathbf{A} \boxtimes \mathbf{C})$

$$
\begin{aligned}
& (\mathbf{A} \boxtimes(\mathbf{B} \boxplus \mathbf{C}))(i, j) \\
= & \sum_{1 \leq q \leq n}^{\oplus} \mathbf{A}(i, q) \otimes(\mathbf{B} \boxplus \mathbf{C})(q, j) \\
= & \sum_{1 \leq q \leq n}^{\oplus} \mathbf{A}(i, q) \otimes(\mathbf{B}(q, j) \oplus \mathbf{C}(q, j)) \\
= & \sum_{1 \leq q \leq n}^{\oplus}(\mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus(\mathbf{A}(i, q) \otimes \mathbf{C}(q, j)) \\
= & \left(\sum_{1 \leq q \leq n}^{\oplus} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)\right) \oplus\left(\sum_{1 \leq q \leq n}^{\oplus} \mathbf{A}(i, q) \otimes \mathbf{C}(q, j)\right) \\
= & ((\mathbf{A} \boxtimes \mathbf{B}) \boxplus(\mathbf{A} \boxtimes \mathbf{C}))(i, j)
\end{aligned}
$$

## Adjacency Matrix

$$
\alpha_{\boxtimes}(i, j)=\mathbf{I}(i, j)= \begin{cases}\alpha_{\otimes} & \text { if } i=j, \\ \alpha_{\oplus} & \text { otherwise }\end{cases}
$$

adjacency matrix A :

$$
\mathbf{A}(i, j)= \begin{cases}w(i, j) & \text { if }(i, j) \in E \\ \alpha_{\oplus} & \text { otherwise }\end{cases}
$$

Note: if $\mathbf{A}$ is $q$-stable, then $\mathbf{X}=\mathbf{A}^{(*)} \boxtimes \mathbf{B}$ solves the matrix equation

$$
\mathbf{X}=(\mathbf{A} \boxtimes \mathbf{X}) \boxplus \mathbf{B}
$$

## Path Weight

For graph $G=(V, E)$ with $w: E \rightarrow S$
The weight of a path $p=i_{1}, i_{2}, i_{3}, \cdots, i_{k}$ is then calculated as

$$
w(p)=w\left(i_{1}, i_{2}\right) \otimes w\left(i_{2}, i_{3}\right) \otimes \cdots \otimes w\left(i_{k-1}, i_{k}\right)
$$

The empty path $\epsilon$ is usually give the weight $\alpha_{\otimes}$.

## Ur-algorithms

We now consider two methods of finding solutions to the matrix equation. Denote by $\mathbf{A}^{k}$ the $k$ th power of $\mathbf{A}$ and by $\mathbf{A}^{(k)}$ the sum

$$
\mathbf{A}^{(k)}=\mathbf{I} \boxplus \mathbf{A} \boxplus \cdots \boxplus \mathbf{A}^{k} .
$$

## Matrix Iteration

$$
\begin{aligned}
\mathbf{A}^{[0]}(\mathbf{B}) & =\mathbf{B} \\
\mathbf{A}^{[k+1]}(\mathbf{B}) & =\left(\mathbf{A} \boxtimes \mathbf{A}^{[k]}(\mathbf{B})\right) \boxplus \mathbf{B}
\end{aligned}
$$

When distribution holds we have $A^{(k)}=A^{[k]}$.

## Optimality

- Let $P(i, j)$ be the set of paths from $i$ to $j$.
- Let $P^{k}(i, j)$ be the set of paths from $i$ to $j$ with exactly $k$ arcs.
- Let $P^{(k)}(i, j)$ be the set of paths from $i$ to $j$ with at most $k$ arcs.


## Theorem

> (1) $\mathbf{A}^{k}(i, j)=\sum_{p \in P^{k}(i, j)}^{\oplus} w(p)$
> (2) $\mathbf{A}^{(k+1)}(i, j)=\sum_{p \in P^{k}(i, j)}^{\oplus} w(p)$
> (3) $\quad \mathbf{A}^{(*)}(i, j)=\sum_{p \in \sum^{\oplus}(i, j)}^{\oplus} w(p)$

## Proof of (1)

By induction on $k$. Base Case: $k=0$. $P^{k}(i, i)=\{\epsilon\}$, so $\mathbf{A}^{0}(i, i)=\mathbf{I}(i, i)=\alpha_{\otimes}=w(\epsilon)$. And $i \neq j$ implies $P^{k}(i, j)=\{ \}$. By
convention $\sum_{p \in\{ \}}^{\oplus} w(p)=\alpha_{\oplus}=\mathbf{I}(i, j)$.

## Proof of (1)

## Induction step.

$$
\begin{aligned}
\mathbf{A}^{k+1}(i, j) & =\left(\mathbf{A} \boxtimes \mathbf{A}^{k}\right)(i, j) \\
& =\sum_{1 \leq q \leq n}^{\oplus} \mathbf{A}(i, q) \otimes \mathbf{A}^{k}(q, j) \\
& =\sum_{1 \leq q \leq n}^{\oplus} \mathbf{A}(i, q) \otimes\left(\sum_{p \in P^{k}(q, j)}^{\oplus} w(p)\right) \\
& =\sum_{1 \leq q \leq n}^{\oplus} \sum_{p \in P^{k}(q, j)}^{\oplus} \mathbf{A}(i, q) \otimes w(p) \\
& =\sum_{(i, q) \in E}^{\oplus} \sum_{p \in P^{k}(q, j)}^{\oplus} w(i, q) \otimes w(p) \\
& =\sum_{p \in P^{k+1}(i, j)}^{\oplus} w(p)
\end{aligned}
$$

## Matrix Stability?

- $n \times n$-matrix semirings are not 0-stable (well, unless perhaps $n=1$ ).
- Stability depends on stability of underlying semiring $S$.
- If $S$ is bounded, then $n \times n$-matrix semiring is $n-1$-stable!


## Direct Product of Semigroups

Let $\left(S, \oplus_{S}\right)$ and $\left(T, \oplus_{T}\right)$ be semigroups.
Definition (Direct product semigroup)
The direct product is denoted $\left(S, \oplus_{S}\right) \times\left(T, \oplus_{T}\right)=(S \times T, \oplus)$, where $\oplus=\oplus s \times \oplus_{T}$ is defined as

$$
\left(s_{1}, t_{1}\right) \oplus\left(s_{2}, t_{2}\right)=\left(s_{1} \oplus_{S} s_{2}, t_{1} \oplus_{T} t_{2}\right) .
$$

## Lexicographic Product of Semigroups

## Definition (Lexicographic product semigroup (from [Gur08]))

Suppose $S$ is commutative idempotent semigroup and $T$ be a monoid. The lexicographic product is denoted $\left(S, \oplus_{S}\right) \overrightarrow{\times}\left(T, \oplus_{T}\right)=(S \times T, \oplus)$, where $\oplus=\oplus_{S} \vec{x} \oplus_{T}$ is defined as

$$
\left(s_{1}, t_{1}\right) \oplus\left(s_{2}, t_{2}\right)= \begin{cases}\left(s_{1} \oplus_{s} s_{2}, t_{1} \oplus T t_{2}\right) & s_{1}=s_{1} \oplus s s_{2}=s_{2} \\ \left(s_{1} \oplus_{s} s_{2}, t_{1}\right) & s_{1}=s_{1} \oplus_{s} s_{2} \neq s_{2} \\ \left(s_{1} \oplus_{s} s_{2}, t_{2}\right) & s_{1} \neq s_{1} \oplus s s_{2}=s_{2} \\ \left(s_{1} \oplus_{s} s_{2}, \alpha_{T}\right) & \text { otherwise. }\end{cases}
$$

Exercise: prove that this is associative!

## Lexicographic Semiring

$$
\left(S, \oplus_{S}, \otimes_{S}\right) \overrightarrow{\times}\left(T, \oplus_{T}, \otimes_{T}\right)=\left(S \times T, \oplus_{S} \overrightarrow{\times} \oplus_{T}, \otimes_{S} \times \otimes_{T}\right)
$$

Theorem ([Sai70, GG07, Gur08])

$$
\mathrm{M}(S \overrightarrow{\times} T) \Longleftrightarrow \mathrm{m}(S) \wedge \mathrm{M}(T) \wedge(\mathrm{C}(S) \vee \mathrm{K}(T))
$$

Where
Property Definition

| M | $\forall a, b, c: c \otimes(a \oplus b)=(c \otimes a) \oplus(c \otimes b)$ |
| :--- | :--- |
| c | $\forall a, b, c: c \otimes a=c \otimes b \Longrightarrow a=b$ |
| K | $\forall a, b, c: c \otimes a=c \otimes b$ |

## Return to examples

| name | M | c | K |
| :---: | :---: | :---: | :---: |
| sp | Yes | Yes | No |
| bw | Yes | No | No |

So we have

$$
\mathrm{M}(\mathrm{sp} \overrightarrow{\times} \mathrm{bw})
$$

and

$$
\neg(\mathrm{M}(\mathrm{bw} \overrightarrow{\times} \mathrm{sp}))
$$

## Martelli's semiring ([Mar76])

- A cut set $C \subseteq E$ for nodes $i$ and $j$ is a set of edges such there is no path from $i$ to $j$ in the graph $(V, E-C)$.
- $C$ is minimal if no proper subset of $C$ is a cut set.
- Martelli's semiring is such that $\mathbf{A}^{(*)}(i, j)$ is the set of all minimal cut sets for $i$ and $j$.
- The arc $(i, j)$ is has weight $w(i, j)=\{\{(i, j)\}\}$.
- $S$ is the set of all subsets of the power set of $E$.
- $X \oplus Y$ is $\{x \cup y \mid x \in X, y \in Y\}$ with any non-minimal sets removed.
- $X \otimes Y$ is $X \cup Y$ with any non-minimal sets removed.


## Example

$$
\begin{aligned}
X & =\{\{(2,3\},\{(1,3),(2,4)\}\} \\
Y & =\{\{(1,3),(2,3\},\{(1,3),(2,4)\}\} \\
X \oplus Y & =\{\{(1,3),(2,3\},\{(1,3),(2,4)\}\} \\
X \otimes Y & =\{\{(2,3\},\{(1,3),(2,4)\}\}
\end{aligned}
$$

## Martelli

$$
(i, j) \in E \rightarrow w(i, j)=\{\{(i, j)\}\}
$$



## Martelli




## Martelli

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
\{\phi\} & \{\{(1,2)\}\} & \{\phi\} & \{\{(1,4)\}\} \\
\{\phi\} & \{\phi\} & \{\phi\} & \{\phi\} \\
\{\phi\} & \{\{(3,2)\}\} & \{\phi\} & \{\phi\} \\
\{\{(4,1)\}\} & \{\phi\} & \{\{(4,3)\}\} & \{\phi\}
\end{array}\right] \\
& A^{2}=\left[\begin{array}{cc}
\{\{(1,4)\},\{(4,1)\} & \{\phi\} \\
\{\phi\} & \{\phi\} \\
\{\phi\} & \{\phi\} \\
\{\phi\} & \{\{(1,2),(3,2)\},\{(1,2),(4,3),\{(4,1),(3,2)\},\{(4,1),(4,3)\}\}
\end{array}\right. \\
& A^{3}=A^{\xi}=\left[\begin{array}{cc}
\{\phi\} & \{\{(1,4)\},\{(1,2),(3,2)\},\{(1,2),(4,3)\},\{(4,1),(3,2)\},\{(4,1),(4,3)\} \\
\{\phi\} & \{\phi\} \\
\{\phi\} & \{\phi\} \\
\{(1,4)\},\{(4,1)\}\} & \{\phi\}
\end{array}\right. \\
& \left.\begin{array}{cc}
\{\{(1,4)\},\{(4,3)\}\} & \{\phi\} \\
\{\phi\} & \{\phi\} \\
\{\phi\} & \{\phi\} \\
\{\phi\} & \{\{(1,4)\},\{(4,1)\}\}
\end{array}\right] \\
& A^{4}=\left[\begin{array}{cccc}
\{\{(1,4)\},\{(4,1)\}\} & \{\phi\} & \{\{(1,4)\},\{(1,4),(4,3)\}\} & \{\phi\} \\
\{\phi\} & \{\phi\} & \{\phi\} & \{\phi\} \\
\{\phi\} & \{\phi\} & \{\phi\} & \{\phi\} \\
\{\phi\} & \{\{(4,1)\},\{(1,4)\},\{(1,2),(3,2)\},\{(1,2),(4,3)\}\} & \{\phi\} & \{\{(1,4)\},\{(1,4)\}\}
\end{array}\right] \\
& A^{(4)}=\left[\begin{array}{cccc}
\phi & \{\{(1,2),(1,4)\},\{(1,2),(3,2)\},\{(1,2),(4,3)\}\} & \{\{(1,4)\},\{(4,3)\}\} & \{\{(1,4)\}\} \\
\{\phi\} & \phi & \{\phi\} & \{\phi\} \\
\{\phi\} & \{(3,2)\} & \phi & \{\phi\} \\
\{\{(4,1)\}\} & \{(1,2),(3,2)\},\{(1,2),(4,3)\},\{(4,1),(3,2)\},\{(4,1),(4,3)\}\} & \{(4,3)\}\} & \phi
\end{array}\right] \\
& \{(\{1,4)\},\{(4,1)\}\}
\end{aligned}
$$

## Bibliography I

[Car79] Bernard Carré.
Graphs and Networks.
Oxford University Press, 1979.
[GG07] A. Gurney and T. G. Griffin.
Lexicographic products in metarouting.
In Proc. Inter. Conf. on Network Protocols, October 2007.
[GM84] M. Gondran and M. Minoux.
Graphs and Algorithms.
Wiley, 1984.
[GM08] M. Gondran and M. Minoux. Graphs, Dioids, and Semirings : New Models and Algorithms. Springer, 2008.

## Bibliography II

[Gur08] Alexander Gurney.
Designing routing algebras with meta-languages.
Thesis in progress, 2008.
[Mar76] Alberto Martelli.
A gaussian elimination algorithm for the enumeration of cut sets in a graph.
Journal of the ACM, 23(1):58-73, 1976.
[Sai70] Tôru Saitô.
Note on the lexicographic product of ordered semigroups. Proceedings of the Japan Academy, 46(5):413-416, 1970.

## Bibliography III

[Sob02] Joao Luis Sobrinho.
Algebra and algorithms for QoS path computation and hop-by-hop.
IEEE/ACM Transactions on Networking, 10(4):541-550, August 2002.

