
An Algebraic Approach to Internet Routing
Part I

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk
Computer Laboratory

University of Cambridge, UK

Departamento de Ingeniería Telemática
Escuela Politécnica Superior

Universidad Carlos III de Madrid
16, 17, 18 March, 2009

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Part I UC3M 03/2009 1 / 53



Shortest paths example

A weighted graph :
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The Adjacency matrix :

1 2 3 4 5

A =

1

2

3

4

5


∞ 3 4 ∞ ∞
3 ∞ 1 ∞ ∞
4 1 ∞ 2 2
∞ ∞ 2 ∞ ∞
∞ ∞ 2 ∞ ∞



The algebraic structure is sp = (N ∪ {∞}, min, +).
Path weights are computed from arc weights using +.
Best path weights are selected using min.
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Solution to the example

The example graph:
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The solution:

1 2 3 4 5

X =

1

2

3

4

5


0 3 4 6 6
3 0 1 3 3
4 1 0 2 2
6 3 2 0 4
6 3 2 4 0


How do we find solutions?

We will mostly look at matrix methods.
Other familiar methods (Dijktra’s algorithm, Bellman-Ford) can be
used in special cases to compute a selected row of the solution.
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Equational specification of problem being solved
1 Extend (min, +) to (�, �) on 5× 5 matrices in the natural way :

(A � B)(i , j) = A(i , j) min B(i , j)

(A � B)(i , j) = min
1≤q≤5

A(i , q) + B(q, j)

2 Solve this matrix equation for X:

X = (A� X)� I

where I is the identity matrix:

1 2 3 4 5

I =

1

2

3

4

5


0 ∞ ∞ ∞ ∞
∞ 0 ∞ ∞ ∞
∞ ∞ 0 ∞ ∞
∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ 0
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Does it make sense?

Suppose X satisfies

X = (A� X)� I

then
X(i , i) = 0

and for i 6= j ,

X(i , j) = min
1≤q≤5

A(i , q) + X(q, j)
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Example: Widest paths (max, min)

The algebraic structure is bw = (N ∪ {∞}, max, min).
Path weights are computed from arc weights using min.
Best path weights are selected using max.

A weighted graph :
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The solution: FIX

1 2 3 4 5

X =

1

2

3

4

5


∞ 3 4 2 2
3 ∞ 3 3 3
4 3 ∞ 2 2
2 2 2 ∞ 2
2 2 2 2 ∞


But (max, +) does not work. Why?
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(Classical) Algebraic Routing

Generalize to semi-rings

(N ∪ {∞}, min, +) −→ (S, ⊕, ⊗)

Use S to assign weights to arcs in a graph with n nodes.
Extend S to n × n matrices over S.
Study properties of S (or of the weighted graph) that imply that we
can find solutions to

X = (A� X)� B

For example, distribution plays a key role in the classical theory.

(L.DIST) a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)
(R.DIST) (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)
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Semiring Examples

See [Car79, GM84, GM08]
identity identity possible use

name S ⊕, ⊗ for ⊕ for ⊗ in routing

sp N ∪ {∞} min + ∞ 0 minimum-weight routing
bw N ∪ {∞} max min 0 ∞ greatest-capacity routing
rel [0, 1] max × 0 1 most-reliable routing
use {0, 1} max min 0 1 usable-path routing

P(W ) ∪ ∩ {} W shared link attributes?
P(W ) ∩ ∪ W {} shared path attributes?
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La Santa Biblia
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Building new semi-rings from old ...

name S ⊕, ⊗ ⊕ id ⊗ id description
sp N ∪ {∞} min + ∞ 0 minimum-weight routing
bw N ∪ {∞} max min 0 ∞ greatest-capacity routing

sp ~× bw (N ∪ {∞})× (N ∪ {∞}) ⊕ ⊗ (∞, 0) (0, ∞) widest, shortest-paths

Where ⊕ is a lexicographic addition,

(d1, b1) ⊕ (d2, b2) =


(d1, b1) (if d1 = min(d1, d2))
(d2, b2) (if d2 = min(d1, d2))

(d1, b1 max b2) (if d1 = d2)

and ⊗ is a direct product

(d1, b1) ⊗ (d2, b2) = (d1 + d2, b1 min b2)

This makes a nice semi-ring!
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... but you must be careful!

What if we want shortest, widest-paths (see [Sob02])? Then combine
this (lexicographically) in the other order:

Let

(b1, d1) ⊕ (b2, d2) =


(b1, d1) (if b1 = max(b1, b2))
(b2, d2) (if b2 = max(b1, b2))

(b1, d1 min d2) (if b1 = b2)

let (b1, d1) ⊗ (b2, d2) = (b1 min b2, d1 + d2)

We will see that this does not produce a semi-ring (distribution rules do
not hold)!!

Why? (A big question, which will be answered!)
Might it still be useful for routing? (We will see that the answer is
MAYBE!)
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Defining and implementing a new routing protocol is
difficult!

The space is large
The proofs are difficult
Correctness conditions hard to get right

Could the design process be partially automated?
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(Prototype) Metarouting System

Check

Link

Routing algorithms
e.g. gBGP, gOSPF, Bellman-Ford

Protocol
specification

Protocol
implementation

Routing language processing

RAML
Extract

IRL

Properties Properties

CompileSplit
C++

Target algorithm information

Compilation

Specification : Algorithms are currently picked from a menu, while
the routing language is specified in terms of the Routing Algebra
Meta-Language (RAML).
Errors: Each algorithm is associated with properties it requires of
a routing language (Example : Dijkstra requires a total order on
metrics). Properties are automatically derived from RAML
expressions. An error is reported when there is a mis-match.
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Outline

Part I (today)
I Review of classical theory

Part II (tomorrow)
I Present a constructive approach

Part III (Wednesday)
I Live dangerously — drop distribution!
I Model BGP-like protocols
I Metarouting
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Goals these lectures

Goals
Understand the equation

routing protocol = routing algebra + routing algorithm

Understand how to construct new and interesting routing algebras
Ignore implementation details
Ignore the pressures of hot-topicism
Go beyond Gondran and Minoux
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Caveats

This is work in progress.
We will not explore the important topic of efficient implementation
of distributive algorithms.
We will not explore the relationship between routing and
forwarding, or routing and signaling (say PNNI).
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Let’s start with a bit of notation!

Symbol Interpretation
N Natural numbers (starting with zero)
N∞ Natural numbers, plus infinity
Z Integers
R Real numbers
R≥0 Positive real numbers (including zero)
R∞≥0 Positive real numbers, plus infinity

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Part I UC3M 03/2009 17 / 53



Semigroups

Definition (Semigroup)
A semigroup (S, ⊕) is a non-empty set S with a binary operation such
that

ASSOCIATIVE : a⊕ (b ⊕ c) = (a⊕ b)⊕ c

S ⊕ where
N ∪ {∞} min
N ∪ {∞} max
N ∪ {∞} +
P(W ) ∪
P(W ) ∩

S∗ ◦ (abc ◦ de = abcde)
S left (a left b = a)
S right (a right b = b)

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Part I UC3M 03/2009 18 / 53



Special Elements

Definition
α ∈ S is an identity if for all
a ∈ S

a = α⊕ a = a⊕ α

A semigroup is a monoid if it
has an identity.
ω is an annihilator if for all
a ∈ S

ω = ω ⊕ a = a⊕ ω

S ⊕ α ω

N ∪ {∞} min ∞ 0
N ∪ {∞} max 0 ∞
N ∪ {∞} + 0 ∞
P(W ) ∪ {} W
P(W ) ∩ W {}

S∗ ◦ ε
S left
S right
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Important Properties

Definition (Some Important Semigroup Properties)

COMMUTATIVE : a⊕ b = b ⊕ a
SELECTIVE : a⊕ b ∈ {a, b}

IDEMPOTENT : a⊕ a = a

S ⊕ COMMUTATIVE SELECTIVE IDEMPOTENT

N ∪ {∞} min ? ? ?
N ∪ {∞} max ? ? ?
N ∪ {∞} + ?
P(W ) ∪ ? ?
P(W ) ∩ ? ?

S∗ ◦
S left ? ?
S right ? ?
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Order Relations

We are interested in order relations .⊆ S × S

Definition (Important Order Properties)

REFLEXIVE : a . a

TRANSITIVE : a . b ∧ b . c → a . c

ANTISYMMETRIC : a . b ∧ b . a→ a = b

TOTAL : a . b ∨ b . a

partial preference total
pre-order order order order

REFLEXIVE ? ? ? ?
TRANSITIVE ? ? ? ?

ANTISYMMETRIC ? ?
TOTAL ? ?
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Canonical Pre-order of a Commutative Semigroup
Suppose ⊕ is commutative.

Definition (Canonical pre-orders)

aER
⊕ b ≡ ∃c ∈ S : b = a⊕ c

aEL
⊕ b ≡ ∃c ∈ S : a = b ⊕ c

Lemma (Sanity check)
Associativity of ⊕ implies that these relations are transitive.

Proof.
Note that aER

⊕ b means ∃c1 ∈ S : b = a⊕ c1, and b ER
⊕ c means

∃c2 ∈ S : c = b ⊕ c2. Letting c3 = we have
c = b ⊕ c2 = (a⊕ c1)⊕ c2 = a⊕ (c1 ⊕ c2) = a⊕ c3. That is,
∃c3/inS : c = a⊕ c3, so aER

⊕ c. The proof for EL
⊕ is similar.
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, ⊕) is canonically ordered when aER
⊕ c

and aEL
⊕ c are partial orders.

Definition (Groups)

A monoid is a group if for every a ∈ S there exists a a−1 ∈ S such that
a⊕ a−1 = a−1 ⊕ a = α.
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Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.
If a, b ∈ S, then a = α⊕ ⊕ a = (b ⊕ b−1)⊕ a = b ⊕ (b−1 ⊕ a) = b ⊕ c,
for c = b−1 ⊕ a, so aEL

⊕ b. In a similar way, b ER
⊕ a. Therefore

a = b.
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Natural Orders
Definition (Natural orders)
Let (S, ⊕) be a simigroup.

a .L
⊕ b ≡ a = a⊕ b

a .R
⊕ b ≡ b = a⊕ b

Lemma
If ⊕ is commutative and idempotent, then aED

⊕ b ⇐⇒ a .D
⊕ b, for

D ∈ {R, L}.

Proof.

aER
⊕ b ⇐⇒ b = a⊕ c = (a⊕ a)⊕ c = a⊕ (a⊕ c)

= a⊕ b ⇐⇒ a .R
⊕ b

aEL
⊕ b ⇐⇒ a = b ⊕ c = (b ⊕ b)⊕ c = b ⊕ (b ⊕ c)

= b ⊕ a = a⊕ b ⇐⇒ a .L
⊕ b
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Special elements and natural orders

Lemma (Natural Bounds)

If α exists, then for all a, a �L
⊕ α and α �R

⊕

If ω exists, then for all a, ω �L
⊕ a and a �R

⊕ ω

If α and ω exist, then S is bounded.

ω �L
⊕ a �L

⊕ α

α �R
⊕ a �R

⊕ ω
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Examples of special elements

S ⊕ α ω �L
⊕ �L

⊕
N ∪ {∞} min ∞ 0 ≤ ≥
N ∪ {∞} max 0 ∞ ≥ ≤
P(W ) ∪ {} W ⊇ ⊆
P(W ) ∩ W {} ⊆ ⊇

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Part I UC3M 03/2009 27 / 53



Property Management

Lemma
Let D ∈ {R, L}.

1 IDEMPOTENT((S, ⊕)) ⇐⇒ REFLEXIVE((S, �D
⊕))

2 COMMUTATIVE((S, ⊕)) =⇒ ANTISYMMETRIC((S, �D
⊕))

3 SELECTIVE((S, ⊕)) ⇐⇒ TOTAL((S, �D
⊕))

Proof.
1 a �D

⊕ a ⇐⇒ a = a⊕ a,
2 a �L

⊕ b ∧ a �L
⊕ b ⇐⇒ a = a⊕ b ∧ b = b ⊕ a =⇒ a = b

3 a = a⊕ b ∨ b = a⊕ b ⇐⇒ a �L
⊕ b ∨ b �R

⊕ a
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Bi-semigroups and Pre-semirings

Definition
The structure (S, ⊕, ⊗) is a bi-semigroup when

ADD.ASSOC : (a⊕ b)⊕ c = a⊕ (b ⊕ c)
MULT.ASSOC : (a⊗ b)⊗ c = a⊗ (b ⊗ c),

that is, when both the additive component (S, ⊕) and the multiplicitive
component (S, ⊗) are semigroups.

Definition
A bi-semigroup (S, ⊕, ⊗) is a pre-semiring when

ADD.COMMUTATIVE : a⊕ b = b ⊕ a
LEFT.DISTRIBUTIVE : a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)
RIGHT.DISTIBUTIVE : (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)
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Semirings

Definition
A pre-semiring (S, ⊕, ⊗) is a semiring when there exists α⊕ ∈ S and
α⊗ ∈ S such that

(ADD.L.ALPHA) α⊕ ⊕ a = a
(ADD.R.ALPHA) a⊕ α⊕ = a
(MULT.L.ALPHA) α⊗ ⊗ a = a
(MULT.R.ALPHA) a⊗ α⊗ = a
(MULT.L.OMEGA) α⊕ ⊗ a = α⊕
(MULT.R.OMEGA) a⊗ α⊕ = α⊕

That is, when both (S, ⊕, α⊕) and (S, ⊗, α⊗) are monoids, and
ω⊗ = α⊕.
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Semiring Examples

See [Car79, GM84, GM08]
identity identity possible use

name S ⊕, ⊗ for ⊕ for ⊗ in routing

sp N ∪ {∞} min + ∞ 0 minimum-weight routing
bw N ∪ {∞} max min 0 ∞ greatest-capacity routing
rel [0, 1] max × 0 1 most-reliable routing
use {0, 1} max min 0 1 usable-path routing

P(W ) ∪ ∩ {} W shared link attributes?
P(W ) ∩ ∪ W {} shared path attributes?
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Solving (some) equations over a semiring
We will be interested in solving for x equations of the form

x = (a⊗ x)⊕ b

Let
a0 = α⊕

ak+1 = a ⊕ ak

and
a(k) = a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ ak

a(∗) = a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ ak ⊕ · · ·

Definition (q stability)

If there exists a q such that a(q) = a(q+1), then a is q-stable. Therefore,
a(∗) = a(q).

If α⊗ = ω⊕, then every a is 0-stable!
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Key result

Lemma ([GM84, Car79])

If a is q-stable, then x = a(∗) ⊗ b solves the semiring equation

x = (a ⊗ x) ⊕ b.

Proof: Substitute a(∗) ⊗ b for x to obtain

(a ⊗ (a(∗) ⊗ b)) ⊕ b
= ((a ⊗ a(∗)) ⊗ b) ⊕ b
= ((a ⊗ a(∗)) ⊕ α⊗) ⊗ b (RIGHT.DISTIBUTIVE)
= ((a ⊗ (a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ aq)) ⊕ α⊗) ⊗ b
= (a1 ⊕ a2 ⊕ · · · ⊕ aq+1) ⊕ α⊗) ⊗ b (LEFT.DISTIBUTIVE)

= a(q+1) ⊗ b
= a(∗) ⊗ b
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Semiring of Matrices

Given a semiring S = (S, ⊕ ⊗), define the semiring of n × n-matrices
over S,

Mn(S) = (Mn(S), �, �),

where for A,B ∈Mn(S) we have

(A� B)(i , j) = A(i , j)⊕ B(i , j)

and

(A� B)(i , j) =
⊕∑

1≤q≤n

A(i , q)⊗ B(q, j).

α�(i , j) = ω�(i , j) = α⊕.
α�(i , i) = α⊗, α�(i , j) = α⊕. The matrix α� is often denoted as I.
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Check (left) distribution

A� (B� C) = (A� B)� (A� C)

(A� (B� C))(i , j)

=
⊕∑

1≤q≤n

A(i , q)⊗ (B� C)(q, j)

=
⊕∑

1≤q≤n

A(i , q)⊗ (B(q, j)⊕ C(q, j))

=
⊕∑

1≤q≤n

(A(i , q)⊗ B(q, j))⊕ (A(i , q)⊗ C(q, j))

= (
⊕∑

1≤q≤n

A(i , q)⊗ B(q, j))⊕ (
⊕∑

1≤q≤n

A(i , q)⊗ C(q, j))

= ((A� B)� (A� C))(i , j)

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Part I UC3M 03/2009 35 / 53



Adjacency Matrix

α�(i , j) = I(i , j) =

{
α⊗ if i = j ,
α⊕ otherwise

adjacency matrix A :

A(i , j) =

{
w(i , j) if (i , j) ∈ E ,
α⊕ otherwise

Note: if A is q-stable, then X = A(∗) � B solves the matrix equation

X = (A � X)� B
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Path Weight

For graph G = (V , E) with w : E → S
The weight of a path p = i1, i2, i3, · · · , ik is then calculated as

w(p) = w(i1, i2)⊗ w(i2, i3)⊗ · · · ⊗ w(ik−1, ik ).

The empty path ε is usually give the weight α⊗.
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Ur-algorithms

We now consider two methods of finding solutions to the matrix
equation. Denote by Ak the k th power of A and by A(k) the sum

A(k) = I� A� · · ·� Ak .

Matrix Iteration

A[0](B) = B
A[k+1](B) = (A� A[k ](B))� B

When distribution holds we have A(k) = A[k ].
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Optimality

Let P(i , j) be the set of paths from i to j .
Let Pk (i , j) be the set of paths from i to j with exactly k arcs.
Let P(k)(i , j) be the set of paths from i to j with at most k arcs.

Theorem

(1) Ak (i , j) =
⊕∑

p∈Pk (i,j)

w(p)

(2) A(k+1)(i , j) =
⊕∑

p∈Pk (i,j)

w(p)

(3) A(∗)(i , j) =
⊕∑

p∈P(i,j)

w(p)

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Part I UC3M 03/2009 39 / 53



Proof of (1)

By induction on k . Base Case: k = 0. Pk (i , i) = {ε}, so
A0(i , i) = I(i , i) = α⊗ = w(ε). And i 6= j implies Pk (i , j) = {}. By

convention
⊕∑

p∈{}

w(p) = α⊕ = I(i , j).
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Proof of (1)
Induction step.

Ak+1(i , j) = (A� Ak )(i , j)

=
⊕∑

1≤q≤n

A(i , q)⊗ Ak (q, j)

=
⊕∑

1≤q≤n

A(i , q)⊗ (
⊕∑

p∈Pk (q,j)

w(p))

=
⊕∑

1≤q≤n

⊕∑
p∈Pk (q,j)

A(i , q)⊗ w(p)

=
⊕∑

(i, q)∈E

⊕∑
p∈Pk (q,j)

w(i , q)⊗ w(p)

=
⊕∑

p∈Pk+1(i,j)

w(p)
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Matrix Stability?

n × n-matrix semirings are not 0-stable (well, unless perhaps
n = 1).
Stability depends on stability of underlying semiring S.
If S is bounded, then n × n-matrix semiring is n − 1-stable!
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Direct Product of Semigroups

Let (S,⊕S) and (T ,⊕T ) be semigroups.

Definition (Direct product semigroup)
The direct product is denoted (S,⊕S)× (T ,⊕T ) = (S × T ,⊕), where
⊕ = ⊕S ×⊕T is defined as

(s1, t1)⊕ (s2, t2) = (s1 ⊕S s2, t1 ⊕T t2).
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Lexicographic Product of Semigroups

Definition (Lexicographic product semigroup (from [Gur08]))
Suppose S is commutative idempotent semigroup and T be a monoid.
The lexicographic product is denoted (S,⊕S) ~× (T ,⊕T ) = (S × T ,⊕),
where ⊕ = ⊕S ~×⊕T is defined as

(s1, t1)⊕ (s2, t2) =


(s1 ⊕S s2, t1 ⊕T t2) s1 = s1 ⊕S s2 = s2

(s1 ⊕S s2, t1) s1 = s1 ⊕S s2 6= s2

(s1 ⊕S s2, t2) s1 6= s1 ⊕S s2 = s2

(s1 ⊕S s2, αT ) otherwise.

Exercise: prove that this is associative!
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Lexicographic Semiring

(S, ⊕S, ⊗S) ~× (T , ⊕T , ⊗T ) = (S × T , ⊕S ~×⊕T , ⊗S ×⊗T )

Theorem ([Sai70, GG07, Gur08])

M(S ~× T ) ⇐⇒ M(S) ∧ M(T ) ∧ (C(S) ∨ K(T ))

Where
Property Definition
M ∀a,b, c : c ⊗ (a⊕ b) = (c ⊗ a)⊕ (c ⊗ b)
C ∀a,b, c : c ⊗ a = c ⊗ b =⇒ a = b
K ∀a,b, c : c ⊗ a = c ⊗ b
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Return to examples

name M C K

sp Yes Yes No
bw Yes No No

So we have
M(sp ~× bw)

and
¬(M(bw ~× sp))
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Martelli’s semiring ([Mar76])
A cut set C ⊆ E for nodes i and j is a set of edges such there is
no path from i to j in the graph (V , E − C).
C is minimal if no proper subset of C is a cut set.
Martelli’s semiring is such that A(∗)(i , j) is the set of all minimal
cut sets for i and j .
The arc (i , j) is has weight w(i , j) = {{(i , j)}}.
S is the set of all subsets of the power set of E .
X ⊕ Y is {x ∪ y | x ∈ X , y ∈ Y} with any non-minimal sets
removed.
X ⊗ Y is X ∪ Y with any non-minimal sets removed.

Example

X = {{(2, 3}, {(1, 3), (2, 4)}}
Y = {{(1, 3), (2, 3}, {(1, 3), (2, 4)}}

X ⊕ Y = {{(1, 3), (2, 3}, {(1, 3), (2, 4)}}
X ⊗ Y = {{(2, 3}, {(1, 3), (2, 4)}}
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